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INTRODUCTION
Accumulating evidence suggests that monocytes and macrophages are recruited to tumors

where, in response to microenvironmental stimuli, they secrete inflammatory products, growth
factors, and angiogenic cytokines that may promote tumor growth and metastasis (1).
Macrophages may constitute as much as half of the mass of cells in some tumors, including
breast tumors, and their presence has been shown to correlate with a poor prognosis (2). The
critical role of monocytes and macrophages in angiogenesis has been exemplified by the
identification of thymidine phosphorylase (TP), a known angiogenic factor, as a monocyte or
macrophage product. TP has long been associated with the propensity for angiogenic growth, but
its mechanism of action has been elusive. Recently, it was shown that a dephosphorylated
product of the TP reaction, 2-deoxyribose (2-dR), is a chemoattractant for vascular endothelial
cells (EC) (3). Tumor-associated macrophages produce 2-dR which recruits vascular ECs; under
the influence of stromal cell-derived cytokines, these ECs form a tumor vasculature. Macrophage
involvement in tumor initiation and progression is further supported by the identification of the
macrophage scavenger receptor (MSR)- 1 gene as one of two prostate cancer susceptibility genes
(4); by the identification of tumor susceptibility genes that are macrophage-associated risk
inflammatory factors (5); and by the inclusion of CD68, another macrophage scavenger receptor
gene, in the Genomic Health Oncotype DX breast cancer assay developed by Genomic Health
(6). Taken together, these observations suggest that inflammation is a driving force in
tumorigenesis, and that the monocyte and macrophage are critical effectors in the establishment
and maintenance of a tumor-inducing stroma. Tumor growth depends on angiogenesis and is a
precursor of metastasis. It may be possible to suppress both angiogenesis and metastasis by
inhibiting the inflammatory activities of macrophages with anti-inflammatory drugs. Our
preliminary studies show that MCF-7 breast cancer cells can skew the transcriptional profile of
THP-I macrophages toward the expression of angiogenesis-related genes (8). These findings
suggest that the ability of tumor cells to modulate macrophage gene expression may determine
their angiogenic and metastatic potential. In the tumor microenvironment, macrophages are
known to secrete cytokines which can drive tumor progression via their effects on angiogenesis,
invasion, and metastasis, as well as on tumor immunity. The interaction between tumor cells and
stromal cells is dynamic and transactional, and several variables, including the tissue-specific
phenotype of the macrophages, contact time, the stability of the changes induced in tumor cells,
and the potential of pharmacological agents to reverse these changes, are yet to be determined.
Our studies focus on the interactions between macrophages and tumor cells, rather than the cells
themselves, as targets of therapeutic intervention. Our results suggest that in vitro assays of
anticancer agents should be conducted on tumor cells in the presence of stromal cells that play a
role in modulating tumor phenotype.

BODY
STATEMENT OF WORK
Tamoxifen and tumor-associated macrophages
Task 1. Determine the effect of in vitro co-culture on gene expression in BC cells and THP-1-

macrophages (Months I - 18):
(a) Recruitment of postdoctoral fellow (Months I - 2)
(b) Grow cells, set up co-cultures of BC and THP-1 macrophages (Months I - 7)
(c) Isolate mRNA for gene expression array analysis, Months 4 - 12
(d) Standardize and calibrate gene expression arrays for proliferation-related gene expression in
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BC cells co-cultured with THP-1 macrophages (Months 11 - 18)

Task 2. Studies on effects of anti-inflammatory and macrophage-modulating compounds on
macrophage and BC gene expression (Months 16 - 36):

(a) Co-culture of cells for studies on the effects of anti-inflammatory agents (Months 16 - 30)
(b) Isolation of mRNA for RT-PCR, and gene expression arrays for Task 2 (Months 17- 30)
(c) Western blotting, ELISA for cytokines, RT-PCR (Months 24 - 36)

This report covers activities included in Task l(d) and Task 2(a). Results of Task 1(d) were
presented in the 2003 annual report and at the American Association for Cancer Research-
National Cancer Institute-European Organization for Research and Treatment of Cancer
International Conference: Molecular Targets and Cancer Therapeutics, Boston, MA, November
17 - 21, 2003 (Reference 8, and Appendix 1). Some results reported in this report were also
included in a poster presentation at the 2004 annual meeting of the American Association for
Cancer Research in Orlando, FL (9) and Appendix 3.

Angiogenesis is critical for tumor growth. The establishment of a tumor vasculature allows a
tumor to grow to a size greater than I or 2 mm in diameter. Beyond this size, tumors outstrip the
supply of oxygen and nutrients and will die unless a vasculature is established. An increase in
tumor mass is a precursor for all of the other stages in tumor progression. Because tumor cells
tend to be genetically unstable owing to loss or epigenetic modification of tumor suppressor
genes, the larger the number of cells in a tumor the greater is the probability that escape mutants
with more aggressive phenotypes will occur and that clonal outgrowth of such cells will lead to
invasion and metastasis. Therefore, angiogenic cytokines produced by tumor cells or stromal
cells may drive tumor progression. Many cytokines, such as acidic fibroblast growth factor
(aFGF), basic fibroblast growth factor (bFGF), interleukin-8 (IL-8), and vascular endothelial
growth factor (VEGF), stimulate both proliferation and angiogenesis.

We have investigated the ability of macrophages to influence angiogenesis related gene
expression in MCF-7 breast cancer cells and, reciprocally, the ability of MCF-7 cells to alter
THP-1 macrophage gene expression. We have also examined the ability of tamoxifen (TMX), a
widely used drug for the prevention and treatment of breast cancer, to modulate this transactional
regulation of gene expression between macrophages and breast cancer cells. Appendix 3 shows
the lay-out of angiogenesis-related genes in the GE Array Q Series Human Angiogenesis Gene
Array (SuperArray, Frederick, MD) used in these studies. We found that bryostatin 1-
differentiated THP-1 macrophages express very low levels of IL-8 mRNA. (The use of
bryostatin-1 as a differentiating agent in place of phorbol 12-myristate 13-acetate (PMA) is
explained below). However, co-culture with MCF-7 dramatically up-regulated IL-8 under
normoxia (Fig. IA and 1 D) but not under hypoxia (Fig. 2), and this up-regulation was not
affected by tamoxifen (10 ptM) or aspirin (1 mM) (Fig. I E & IF). Unexpectedly, TMX induced
HIF-I a expression (Fig. I B), while aspirin dramatically up-regulated IL-IO (Fig. IC). THP-1
macrophages did not express IL-10 under normoxia or hypoxia (F.g. IA & 2A). However,
aspirin up-regulated IL- 10 in the macrophages under both normoxia and hypoxia, except when
MCF-7 cells are present. We surmise that MCF-7 cells secrete a factor that overrides the ability
of aspirin to induce IL-10 in the macrophages. IL-10 is a potent anti-inflammatory cytokine:
therefore, the MCF-7-mediated suppression of aspirin-induced IL-1O expression is consistent
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with the ability of tumor cells to maintain a pro-inflammatory microenvironment. By suppressing
IL-10 expression, MCF-7 cells control gene expression in the co-cultured macrophages in a
manner that perpetuates a pro-inflammatory environment. A search of PubMed failed to show
any report on aspirin regulation of IL- 10 gene expression in macrophages. The ability of aspirin
to induce IL-10 expression may be an additional mechanism by which this widely used non-
steroidal anti-inflammatory drug (NSAID) exerts its anti-inflammatory effects. Aspirin (1 mM)
also up-regulated IL-1O in MCF-7 cells, under both normoxia and hypoxia (Fig. 3C & 4C).
MCF-7 cells did not express IL-10, except when they were treated with aspirin (Fig. 3C & 3D &
4C & 4D). Co-culture of MCF-7 with macrophages or treatment with TMX did not induce MCF-
7 IL-10 under normoxia or hypoxia. However, aspirin induced IL-10 under both conditions (Fig
5C & 5D). Therefore, aspirin consistently induced IL-1O expression in both tumor cells and
macrophages.

We have also investigated the ability of THP- 1 macrophages to influence the proliferation and
survival of MCF-7 cells treated with 10 j.M TMX. Fig. 7 shows the survival of adherent MCF-7
cells as measured by the MTT assay in the presence and absence of co-cultured macrophages.
The MTT assay was conducted after 3 d of co-culture. Under both normoxia and hypoxia, MCF-
7 cells proliferated more rapidly and showed a greater survival rate when they were co-cultured
with macrophages. These results are consistent with the hypothesis that tumor-associated
macrophages secrete cytokines and other factors that promote tumor cell growth. Next, we tested
the ability of aspirin to modulate the macrophage-mediated protection of MCF-7 cells from
tamoxifen killing. When THP-1 macrophages were pre-treated with 1 mM aspirin, and then co-
cultured with MCF-7 cells that were exposed to varying concentrations of TMX, aspirin
treatment of the macrophages completely abrogated the protection of MCF-7 cells from TMX
killing (Fig. 8). The large difference in proliferation/survival between MCF-7 cells grown in the
presence of macrophages and those grown without macrophages, or with aspirin-treated
macrophages, reflects the contribution of the macrophages to MCF-7 proliferation over 3 days of
co-culture.

During the course of these investigations, we learned that PMA, the reagent used to differentiate
THP-1 monocytes to macrophages, also induced IL-8 expression in several cell types. Therefore,
we could not be sure whether the high expression of IL-8 observed in PMA-differentiated
macrophages was due to their status as differentiated macrophages or to PMA stimulation.
Accordingly, we used another macrophage-differentiating agent, bryostatin 1, at a concentration
of 10 nM, to differentiate THP- I monocytes. Bryostatin I is not known to induce IL-8
expression, and IL-8 expression was negligible in bryostatin 1-differentiated THP-1
macrophages. All subsequent studies, including the studies reported herein, were done with
bryostatin 1-differentiated THP-1 macrophages.

RESEARCH ACCOMPLISHMENTS

"* We have found that aspirin (1 mM) induces the expression of IL-JO, a potent anti-
inflammatory cytokine gene in both macrophages and breast cancer cells, suggesting a
novel mechanism for the anti-inflammatory action of aspirin.

"* We have shown that MCF-7 breast cancer cells suppress IL-10 expression in co-cultured
macrophages, even when the cells are treated with aspirin, suggesting that MCF-7 cells
secrete a factor that overrides the ability of aspirin to induce IL-JO.
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"* We have shown that co-cultured macrophages protect MCF-7 cells from tamoxifen
killing, suggesting that tumor-infiltrating macrophages may attenuate the effects of
tamoxifen therapy.

"* We have shown that aspirin abrogates the protection of MCF-7 cells against tamoxifen
killing conferred by macrophages, providing a rationale for an adjuvant role of aspirin in
combination tamoxifen therapy.

"* We have formulated a testable hypothesis that IL-10 is a critical mediator of tumor cell-
stromal cell interaction, and that inflammation promotes rather than protects against
tumor growth, as has been suggested by others. This development was not envisioned in
the original proposal. The role of IL-i10 in tumor growth can be investigated by ablation
of IL- 10 with anti-IL- 10 antibody or through RNA interference.

REPORTABLE OUTCOMES

1. Morris, G. S. and Bremner, T. A. (2003). Tamoxifen alters the inflammatory cytokine
transcriptional profile induced in THP-1 macrophages by MCF-7 breast cancer cells.
Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and
Cancer Therapeutics, Boston, MA, November 17- 21, 2003 (ABSTRACT B197). Poster
presentation. Copy of abstract in Appendix 1.

2. Morris, G. S., Henry, G. A., and Bremner, T. A. THP-1 macrophages stimulate
proliferation, protect against tamoxifen killing, and modulate angiogenesis-related gene
expression in MCF-7 breast cancer cells. AACR 9 4th Annual Meeting Proceedings, vol.
45, 1199. ABSTRACT #5201, March 2004. Poster presentation. Copy of abstract in
Appendix 2.

3. Ms. Gay Morris, graduate student/technician supported by this grant has completed her
Ph.D. dissertation, add will defend same before August 16, 2004. She has accepted a
postdoctoral position in the laboratory of Dr. Kent Osborne, Baylor College of Medicine,
Houston, TX, where she will receive additional training in breast cancer.

4. Zhe Jin, M.D., Ph.D. joined the laboratory in January 2004 to fill the post-doctoral
position on the grant. Dr. Jin was recruited from the Department of Chemical Biology,
Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of
Pharmacy, Rutgers, The State University of NJ. Dr. Jin earned the M.D. degree from China
Medical University (P. R. China) in 1992, and the Ph.D. in Medical Science (Pathology)
from Yamagata University School of Medicine (Japan) in 2002.

CONCLUSIONS
The angiogenic switch marks a critical juncture in tumor progression. The molecular changes

that drive the development of a tumor vasculature are triggered by signals that originate in both
tumor cells and surrounding stromal cells. While stromal and extracellular matrix constituents
can exert potent tumor-suppressive effects, investigation of the interplay between tumor cells and
stromal cells reveals that tumor cells can reprogram the transcriptome of stromal cells, especially
macrophages, to produce a cytokine milieu that promotes cancer cell survival and angiogenesis.
The significance of these findings for cancer therapy is profound. This emerging paradigm of
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tumor progression implies that therapeutic targets of progression should be sought not only in the
transformed epithelial cells themselves but in the stromal cells as well and, more importantly, in
the reciprocal signaling that characterizes epithelial-stromal interactions. These are difficult
(moving) targets, but they are tractable and hopefully 'drugable'. Our data show that
macrophages can protect tumor cells against tamoxifen killing, and that aspirin can abrogate this
protection. Recent reports suggest that aspirin and other NSAIDs are effective chemopreventive
agents for breast cancer, especially estrogen receptor-positive breast cancer (9). Our data
elucidate a novel mechanism for aspirin action in breast cancer chemoprevention and
chemotherapy and suggest that tamoxifen in combination with aspirin may be more effective
than tamoxifen alone. We are currently confirming the gene array results with RT-PCR and
Western blot analysis. However, in cases where both cell types secrete the same cytokine, it
would not be possible to determine the contribution of each by measuring the concentration of
the cytokine in the medium. Therefore, emphasis is placed on the regulation of gene expression
as assessed by changes in mRNA levels.
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APPENDIX I

Tamoxifen alters the inflammatory cytokine transcriptional profile induced in THP-1
macrophages by MCF-7 breast cancer cells.

Gay S. Morris, Theodore A. Bremner, Howard University, Washington, DC

Tamoxifen (TMX) is the most widely used anti-estrogen for breast cancer prevention and
treatment, but its effectiveness is limited by the inevitable development of cellular resistance.
The mechanisms that underlie tamoxifen action and resistance are not completely understood.
Abundant evidence suggests that stromal cells, including macrophages, promote tumor
progression. Therefore, the genetic events that underlie progression may occur in both tumor
cells and stromal cells. However, studies of TMX action have generally involved tumor cells
only, and not stromal cells. We have used co-cultures of MCF-7 breast cancer cells and THP-l
macrophages to study interactions between macrophages and tumor cells in a simulated tumor
environment, and to determine the effects of TMX on the transcriptional profiles of both cell
types. MCF-7 cells and THP-1 macrophages were cultured separately or co-cultured with or
without 10 pM TMX. Total RNA was reversed transcribed, biotin-labeled, and hybridized to 96-
gene arrays for inflammatory cytokines/receptors. Our results show that MCF-7 cells altered the
inflammatory cytokine profile of THP-1 macrophages. Regulated genes included ILI, TGF/1,
and SCYA2O (MIP-3a), SCYA3 (MIP-la), SCYA4 (MIP-1p3), and SCYA5 (CCL5/RANTES),
which were dramatically up-regulated, and SCYAI (CCL1), SCYB13 (CXCL13) and SCYA23
(CCL23/MPIF-1) which were down-regulated. In contrast, however, when MCF-7 cells were
treated with TMX prior to co-culture, IL113 expression in the macrophages was decreased,
SCYA20 and TGFJ31 expression was lost, but TGFJ33 and SCYB13 were up-regulated.
However, SCYA17 (CCL17/TARC) SCYA22 (CCL22/MDC), SCYA23, SCYA25 (CCL25/TECK),
and SCYB12 (SDF-la) were induced. Clearly, TMX modulates the ability of MCF-7 cells to
regulate inflammatory cytokine gene expression in THP-1 macrophages. The ability of TMX-
treated MCF-7 to up-regulate TGF/33 expression in THP-1 macrophages deserves further study.
Both IL-I13 and TGFP are implicated in tumor cell survival and metastasis: IL-i13 activates NF-
icB, a known suppressor of apoptosis, and elevated levels of TGFp3s have been associated with
a more metastatic phenotype in breast cancer. Taken together, these findings suggest that the
effectiveness of TMX may be enhanced in combination with chemotherapeutic agents that
ablate IL-13 and TGFO3 production by intratumoral macrophages. Sponsored by the U.S Army
Medical Research and Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014,
Award NO: DAMD17-02-1-0408 to Theodore Bremner (PI). The content of this report does not
necessarily reflect the position or the policy of the Government, and no official endorsement
should be inferred.

Keywords: Cytokines; breast cancer; macrophage; tamoxifen
Abstract Category: 11. Metastasis and invasion targets (e.g., MMP inhibitors, adhesion)
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APPENDIX 2

THP-1 macrophages stimulate proliferation, protect against tamoxifen killing, and
modulate angiogenesis-related gene expression in MCF-7 breast cancer cells

Gay S. Morris, Georgia A.-M. Henry, and Theodore A. Bremner, Howard University,
Washington, DC

Stromal cells influence tumor cell proliferation and tumor progression. The emergence of
aggressive phenotypes may involve signals extrinsic to cancer cells that are generated in the
interaction between cancer cells and stromal cells. We examined breast cancer cell-macrophage
interactions in a simulated tumor environment, using co-cultures of THP- 1 macrophages (Mý)
and MCF-7 breast cancer cells. We hypothesized that (1) M+, in the tumor context, may secrete
factors that promote tumor cell growth and drug resistance, and (2) tamoxifen (TMX) may
stimulate M+ production of pro-angiogenic or pro-metastatic factors despite its ability to inhibit
tumor cell proliferation. MCF-7 cells and THP-I M+ were co-cultured in varying concentrations
of tamoxifen (0 - 15 jtM) for 3 d under normoxia or hypoxia (94% N2, 1% 02, and 5% CO 2).
MCF-7 cell proliferation and survival were measured by the MTT assay. For gene expression
analysis, total RNA was extracted from M+ and MCF-7 cells, labeled, and hybridized to gene
arrays. Up-regulation of candidate genes was confirmed by RT-PCR. Apoptotic killing of MCF-7
by TMX was assessed by DNA laddering. Under normoxia, MCF-7 cells proliferated more
rapidly when co-cultured with THP-1 M+. In the absence of M+, only 17% of MCF-7 cells
survived 15 pM TMX, whereas in the presence of M+, survival was 72%. Under hypoxia,
survival in the absence of M+ was 9%, and 55% in the presence of M+. These data suggest that
M+ reduced the susceptibility of MCF-7 cells to TMX killing. The most dramatic differences in
growth factor- and angiogenesis-related gene expression were observed between MCF-7 cells
alone and MCF-7 in co-culture, under hypoxia. Therefore, the presence of M+ modulated gene
expression in MCF-7 cells. Specifically, in TMX-treated (10 pJM) co-cultures, VEGF, VEGF-D,
osteopontin, thrombospondin, and HIF-Ja were all up-regulated in MCF-7 cells under hypoxia.
Additionally, Mý induced the expression of IL-8, MDK, T/JRs, 1, 2, 3, and ID3. Our findings
suggest that the killing efficiency of TMX may be increased by its combination with drugs that
suppress M+ control of angiogenesis-related gene expression. A more extensive study of the
effects of TMX on the interaction between M+ and tumor cells may provide valuable information
for the development of combination therapies directed at both tumor cells and tumor-associated
M+. Sponsored by the U.S Army Medical Research and Acquisition Activity, 820 Chandler
Street, Fort Detrick MD 21702-5014, Award NO: DAMD 17-02-1-0408 to Theodore Bremner
(PI). The content of this report does not necessarily reflect the position or the policy of the
Government, and no official endorsement should be inferred.
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APPENDIX 3

GEArray Q Series Human Angiogenesis Gene Array ( HS-009)

Array Layout

ADAMTS1 ADAMTS8 RNASE4 ANGPT1 ANGPT2 CD36 CDH5 CHGA
1 2 3 4 5 6 7 8

CSF3 EDG1 EFNA2 EFNA5 EFNB2 EGF EGFR ENG
9 10 11 12 13 14 15 16

EPHB4 ERBB2 ETS1 F2 FGF1 FGF2 FGF4 FGF6

17 18 19 20 21 22 23 24

FGF7 FGFR1 FGFR2 FGFR3 FGFR4 FIGF KDR FLTI

25 26 27 28 29 30 31 32

FNI CXCL1 HGF HIFIA HPSE ID1 ID3 IFNA1

33 34 35 36 37 38 39 40

IFNB1 IFNG IGF1 ILl0 IL12A 1L8 ITGA5 ITGAV

41 42 43 44 45 46 47 48

ITGB3 AMOT COL18A1 SMAD1 MDK MMP2 MMP9 MSR1

49 50 51 52 53 54 55 56

NOS3 NRP1 PDGFA PDGFB PDGFRA PDGFRB PECAM1 PF4

57 58 59 60 61 62 63 64

PGF PLAU PRL PTGS1 PTGS2 PTN RSN CCL2

65 66 67 68 69 70 71 72

SERPINB5 ERPINF1 SPARC SPP1 TEK TGFA TGFB1 TGFB2

73 74 75 76 77 78 79 80

TGFB3 TGFBR1 TGFBR2 TGFBR3 THBS1 THBS2 THBS3 THBS4

81 82 83 84 85 86 87 88

TIE TIMP1 TIMP2 TNF TNFSF15 VEGF VEGFB VEGFC

89 90 91 92 93 94 95 96

PUC18 PUC18 PUC18 Bl GAPD GAPD

97 98 99 103 104
PPIA PPIA PPIA PPIA RPL13A RPL13A ACTB ACTB

105 106 107 108 109 110 111 112

Blank
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APPENDIX 4 (Figs 1 - 8)

m S

HIF1l a r0 -VEGF-D

IL-8 L IL-10 [ I L-8

PEDF

OPN 3 VEGF

(A) M( (B) TMX-M4 (C) MO + Asp

ADAMTS8

IL-8 5* me
PDGFA Wi a

III*it ol 6 SIaml 3u

(D) Mý + (MCF-7) (E) M+• + (TMX-MCF-7) (F) (MO + Asp) + MCF-7

Fig. 1: Angiogenesis-related gene expression in macrophages under
normoxia. M+, macrophages, TMX, tamoxifen, Asp, aspirin. Bryostatin 1-
differentiated macrophages and MCF-7 cells were co-cultured in the
upper and lower wells, respectively, of Costar TranswellTM chambers. The
cells were separated by a membrane of pore size 3 Lm, which allowed
passage of diffusible molecules, but not cells. After co-culture, mRNA was
extracted and used for gene arrays.
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Fig. 2: Angiogenesis-related gene expression in macrophages under
hypoxia. M), macrophage; TMX, tamoxifen; Asp, aspirin. Methods same as
for Fig 1.
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Fig. 3: Angiogenesis-related gene expression in MCF-7 cells under normoxia.
MO, macrophages, TMX, tamoxifen, Asp, aspirin. Bryostatin 1 -differentiated
macrophages and MCF-7 cells were co-cultured in the upper and lower
wells, respectively, of Costar TranswellTM chambers. The cells were
separated by a membrane of pore size 3 gim, which allowed passage of
diffusible molecules, but not cells. After co-culture, mRNA was extracted and
used for gene arrays.
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Fig. 4: Angiogenesis-related gene expression in MCF-7 cells under
hypoxia. Mý, macrophages, TMX, tamoxifen, Asp, aspirin. Bryostatin 1-
differentiated macrophages and MCF-7 cells were co-cultured in the
upper and lower wells, respectively, of Costar TranswellTM chambers.
The cells were separated by a membrane of pore size 3 [tm, which
allowed passage of diffusible molecules, but not cells. After co-culture,
mRNA was extracted and used for gene arrays.
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Fig. 5: Angiogenesis-related gene expression in MCF-7 cells under
normoxia. M+, macrophages, TMX, tamoxifen, Asp, aspirin.
Bryostatin 1-differentiated macrophages and MCF-7 cells were co-
cultured in the upper and lower wells, respectively, of Costar
Transwell'M chambers. The cells were separated by a membrane of
pore size 3 gim, which allowed passage of diffusible molecules, but
not cells. After co-culture, mRNA was extracted and used for gene
arrays.
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Fig. 6: Angiogenesis-related gene expression in MCF-7 cells under
hypoxia. M+, macrophages, TMX, tamoxifen, Asp, aspirin. Bryostatin
1-differentiated macrophages and MCF-7 cells were co-cultured in
the upper and lower wells, respectively, of Costar TranswellTM

chambers. The cells were separated by a membrane of pore size 3
I.m, which allowed passage of diffusible molecules, but not cells.
After co-culture, mRNA was extracted and used for gene arrays.
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Fig. 7. Survival of tamoxifen-treated MCF-7 cells in the presence and absence of
THP-1 macrophages under normoxia (A) and hypoxia (B). Cells were co-cultured
as described previously. Proliferation and survival were measured by the MTT
assay.
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Fig. 8. Tamoxifen kills MCF-7 cells under normoxia (A) or hypoxia (B) in a dose-
dependent manner (green). Macrophages protect MCF-7 cells against tamoxifen
killing (red). Aspirin (1 mM) abrogates macrophage protection of MCF-7 (black).
MCF-7 cells were treated with tamoxifen for 24 h; macrophages were treated
with aspirin for 24 h; medium was changed and cells were co-cultured for 72 h.
Survival was measured by MTT assay. Data points are means ± SD (N = 3
replicates).
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of amylase in three species of Tribolium (Coleoptera, Tenebrionidae). Comparative Biochemistry
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8. Whiteside, C., Blackmon, R. H., and Bremner, T. A. (1983). Estrogen regulation of superoxide
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